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Abstract: Climate-smart forestry is a sustainable forest management approach for increasing positive
climate impacts on society. As climate-smart forestry is focusing on more sustainable solutions that
are resource-efficient and circular, digitalization plays an important role in its implementation. The
article aimed to validate an automatic workflow of processing 3D pointclouds to produce digital
twins for every tree on large 1-ha sample plots using a GeoSLAM mobile LiDAR scanner and VirtSilv
AI platform. Specific objectives were to test the efficiency of segmentation technique developed in the
platform for individual trees from an initial cloud of 3D points observed in the field and to quantify
the efficiency of digital twinning by comparing the automatically generated results of (DBH, H, and
Volume) with traditional measurements. A number of 1399 trees were scanned with LiDAR to create
digital twins and, for validation, were measured with traditional tools such as forest tape and vertex.
The segmentation algorithm developed in the platform to extract individual 3D trees recorded an
accuracy varying between 95 and 98%. This result was higher in accuracy than reported by other
solutions. When compared to traditional measurements the bias for diameter at breast height (DBH)
and height was not significant. Digital twinning offers a blockchain solution for digitalization, and
AI platforms are able to provide technological advantage in preserving and restoring biodiversity
with sustainable forest management.
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1. Introduction

Technology-based on digital twins extends well beyond the initial design to the
merging of the world of IoT (Internet of Things), AI (artificial intelligence), and big data
analytics [1]. Digitally replicating the real world, as more data becomes available, empow-
ers data scientists and other IT specialists to optimize deployments for peak efficiency, as
well as create other potential what-if scenarios [2]. Buildings, factories, and even entire
cities are now digitally represented as digital twins [3]. Some have suggested even people,
processes, and organizations have digital twins, expanding the concept of digital twins
even further [4].

Known as the part of world who harbors the highest biodiversity, forests are one of
the most complex systems from a structural and functional point of view. In addition to
their role as recreational resources, wood products, and material and energy providers,
forests and the forest sector are fundamental in reducing greenhouse gas emissions by
capturing carbon dioxide in tree biomass. [5]. Climate-smart forestry is a sustainable forest
management approach for increasing these positive climate impacts on society [6]. In
response to climate change, the approach intends to reduce greenhouse gas emissions,
adapt forest management to create resilient forests and focus on active forest management
with the goal of sustainability by increasing productivity while simultaneously offering
forest benefits [7,8]. With two big challenges ahead, a green and digital transition, digital
twinning in forestry is the next development step [9]. Digitalization plays a key role in
climate-smart forestry’s focus on sustainable, resource-efficiency, and circular solutions [10].
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In forests, we observe extensive vertical stratification, making them among the world’s
most complex ecosystems [11]. Forests containing conifers are the simplest as they consist of
a tree layer reaching about 30 m in height, a shrub layer that often is spotty, and a soil layer
covered with mosses and lichens [12]. Forests with deciduous foliage are more complex;
a rainforest canopy consists of at least three different layers, while deciduous trees have
a separate upper and lower layer [13]. Due to this complexity, accurate characterization
of forests using precise inventory remains one of the most challenging activities in the
digitalization of forestry [14,15].

Equipment and techniques have become more affordable and accessible in recent
years. With the development of technology to generate 3D scenes from measurements,
LIDAR has become more portable and more affordable [16]. This has enabled the building
of virtual worlds that reflect natural landscapes using precision measurements. Particularly,
terrestrial lidar systems collect large amounts of data varying from tens of thousands to
billions of 3D points to determine the 3D space surrounding a given point in 3D [17].

In forest inventories, a TLS (terrestrial lidars scanner) can document forests rapidly,
automatically, and provide inch-by-inch details in minutes. Early work related to forest
inventory estimation via TLS started with the development of Cyra Technologies’ TLS
system around 2000; and it was later acquired by Leica in 2001 [18–21]. Forest inventories
used TLS as a way to improve harvest efficiency by replacing manual measurements with
measurements derived from TLS data in the forest plots [22]. As a result, TLS has been
used in collecting basic attributes such as DBH (diameter at breast height), tree height,
and tree position in forest sample plots [23,24]. A scientifically confirmed fact is that the
measuring diameter and height of a tree are affected by an error of at least 5.6% and the
measurement bias of DBH and H affects estimation up to 26.4% [25–27]. Therefore, using
classical methods for estimating volume and biomass are not suitable for modern needs in
the context of a circular economy.

Virtual tree measurements are achieved today by using software applications and
allometric approaches [28–33]. However, the quality of results and maturity of these
algorithms are still low [34,35]. Furthermore, there is no digitalization workflow on the
market that would be able to provide a complete set of solutions to the problem, from the
measurements in the forest to creating digital twins of each tree [36]. There are several
challenges in the field of measuring trees in the real world, and multiple scans are needed
from a variety of angles to capture all trees in the area of interest in their full height if
possible [37,38]. Another aspect is the problem of segmentation of individual trees and
the delimitation of the soil surface [35,39]. These are crucial for the entire process of forest
digital twinning, and current solutions often fail due to certain oblique orientations of
the trunks, the presence of shrubs in the soil, and other obstructions present in various
cases [40,41]. With regards to biometric data extraction, most known methods use overly
simplified models that aspire to approximate trunk geometry through cylinders or cones
and excessively complex models that try to model the observational data with as much
precision as possible [36,40].

Among other software that provide partial or total solution to digital twinning (e.g.,
3D Forest, OPALS, TreeQSM), VirtSilv is a newly developed platform that responds to the
realities of the forest and provides industry-specific services in all segments [42]. VirtSilv is
an online platform that uses AI customizable algorithms to produce unique shapes of trees
as digital support for a fully automated traceability IT circuit between forest management,
transport, and the wood industry.

In the current context of software development there is a need to validate an entire
workflow starting with data collection and finishing with providing digital twins usable
in forestry, easily accessible to decision makers. The article aims to validate an automatic
workflow of processing 3D pointclouds to produce digital twins for every tree in a specific
forest using GeoSLAM mobile LiDAR scanner and VirtSilv AI platform. The specific goals
were: (1) to test the efficiency of segmentation technique developed in the platform for
individual trees from an initial cloud of 3D points observed in the field; and (2) to quantify
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the efficiency of digital twinning by comparing the automatically generated results of
(DBH, H and volume) with traditional measurements.

2. Materials and Methods
2.1. Study Area

Several measurement campaigns were carried out, using both a mobile LIDAR device
and traditional forest inventory tools (forestry tape for DBH—diameter at breast height
and vertex logger IV for tree height), focusing on three plots of 1 ha size in Carpathian
Mountains, Ciucas Massif (Figure 1). For this part of the Carpathians, according to the
WorldClim global database on weather and climate data [43], elevations range between
800 and 2400 m a.s.l. and the climate is temperate-continental, with wet summers and cold
winters. The same source mentions for this area mean annual precipitation from 615.4 mm
to 1095 mm (overall annual mean 793.4 mm; standard deviation 84.7) and mean annual
temperature between 1.2 and 9.2 ◦C.

Figure 1. Location of the study.

The 1-ha size plots were selected based on the tree density, geo-spatial distribution,
focusing on the forests of economic interest planned for thinnings and selective logging.

2.2. Data

The plots were scanned using ZEB Horizon, a scanner based on LiDAR technology,
and included in the category of terrestrial laser scanners (TLS). This is a 3D scanner of high-
speed used for measurements that require recording of details. A ZEB Horizon Scanner
uses laser technology, weighing 1.3 kg it is designed for outdoor applications that require
scanning up to 100 m and at an accuracy of 1–3 cm. The scanner uses a rotating mirror to
beam around the area that is scanned. The measurement characteristics consist of up to
300,000 repetitions per second. Data acquired using GEOSLAM Horizon technology is a
point cloud in the form of three-dimensional data compiled using SLAM (simultaneous
localization and mapping). The scanning time suitable to produce dense pointclouds was
on an average of approximately 20 min/hectare for each plot.
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Data collection was carried out in mixed forests, predominated by spruce and beech.
This results in a point cloud made representing the scanner’s environment in a three-
dimensional dataset (Figure 2). Later, the point cloud is mentioned as the laser scan (or
simply scan).

Figure 2. Methodology workflow.

The traditional inventory was made by two teams consisting of two forest engineers.
The average processing time per team was on average of 8 h/hectare.

2.3. Tree Segmentation

The raw data generated during the scanning process enables the visual identification
of individual tree structures, but they are not yet quantitatively differentiated. To create
individual raw material for digital twin, VirtSilv first separates the ground from the trees,
and then it reconstructs each tree separately (Figure 2). The algorithm takes three steps
to estimate each tree’s footprint simultaneously. The algorithm begins at a large nucleus
of points with high density and then grows by accretion until it meets neighboring trees.
As a result, the operator is given many options to customize the algorithm and is given
the option to change data sets according to their needs. The average processing time of
segmentation was 30 min for a 1-ha plot.

2.4. Digital Twinning Process

When all of the individual tree segments are identified, the remaining task is to
recognize tree trunks and model their numerical dimensions on a simple and flexible basis,
thereby giving the potential for the digital twinning process. To overcome the limitations
of current techniques, VirtSilv algorithms are designed around the following principles:

• The trunk shape of segments of sufficiently small height can be approximated very
well by inclined cone trunks;

• The vertical projection of the data obtained from segments of sufficiently small height
can be approximated by a ring of points with relatively high density;

• Generally, the successive segments in the vertical array are very well aligned, in the
sense that the angle and bending of each segment, concerning that vertical changes
are low.

Thus, the VirtSilv algorithm is focused on extracting chains of cone trunks as a numer-
ical model for trunks. The average time of producing the 3D model of a tree digital twin is
less than one minute.
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2.5. Validation, Accuracy Assessment, Robustness Check

For validation, a Bland–Altman test was used. These plots are extensively used to
evaluate the agreement among two different instruments or two measurement techniques.
Bland–Altman plots allow identification of any systematic difference between the measure-
ments (i.e., fixed bias) or possible outliers. This can be carried out by Bland and Altman’s
approximate method or by more precise methods [44,45].

For detecting heteroskedasticity the Breusch-Pagan test was used. It involved using a
variance function and using a χ2-squared test: the test statistic is distributed nχ2 with k degrees
of freedom. If the test statistic has a p-value below an appropriate threshold (e.g., p < 0.05)
then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed.

The boundaries of Bland and Altman’s agreement have traditionally been used to eval-
uate the agreement between different methods of measuring discrete variables. However,
when the variances of the measurement errors of different methods are similar, Bland and
Altman’s plot can be misleading. Therefore, it was used the R package “MethodCompare”
to generate a bias plot and a precision plot based [46].

3. Results

After the traditional inventory was realized, a total number of 1369 trees were sampled
in the three forest plots (Figure 3). Plot 442 had the highest tree density of 739 per hectare,
average DBH of 32.54 cm, average height 29.8, average tree volume 1.25 m3, and a total
volume of 923.06 m3/ha. Plot 051A had a tree density of 373 per hectare, average DBH
of 52.14 cm, average height 36.4, average tree volume 3.65 m3, and a total volume of
1363.35 m3/ha. Plot 050A had the lowest tree density of 258 per hectare, average DBH
of 56.13 cm, average height 38.9, average tree volume 4.32 m3, and a total volume of
1112.57 m3/ha.

VirtSilv automatically segmented 1339 with an overall accuracy of segmentation of
97.8% (Figure 3). In plot 442 the accuracy of segmentation was 99.1%, in plot 051A was
95.2%, and 98.1% in plot 050A.

Out of 30 trees which were unsegmented/missed by the segmentation algorithm of
VirtSilv, the distribution per species was represented by Spruce 37%, Beech 37%, Sycamore
17%, and Fir 10%. Overall, an approximate balance between coniferous and deciduous was
maintained. In the case of beech trees, the average DBH was 16.6 lower than the average
27.6. For spruce, the DBH was 42.4, closer to the average 40.9 especially due to the sample
size, as spruce is the most represented in all three plots.

As a result of the digital twinning process, VirtSilv reconstructed 1339 trees, a pop-
ulation of data described by average DBH and H almost similar to the ones recorded
in traditional measurements (Table 1). Regarding the volume, the average values were
slightly different mostly to the fact that the volume calculated with VirtSilv was based
on the unique 3D shape of each tree, unlike the traditional volume which was calculated
using the specific equation based on species, DBH, and height. In terms of all descriptive
statistics, both traditional (DBH_t, H_t, Vol_t) and virtual measurements (DBH_v, H_v,
Vol_v) presented similar results (Table 1).

Statistical populations differ in the way they are measured based on different tech-
niques used when measuring either traditional or virtual. As for DBH and H characteristics,
both the traditional and virtual measurements are applying the same mathematical ap-
proach. This similar approach is seen in the standard error, median, mode, standard
deviation, and curve distribution characteristics, as they are close to each other on both
traditional and virtual measurements (Table 1). In the case of volumes, the characteristics
of the populations are slightly different as the mathematical approach is different between
traditional and virtual measurements. The traditional approach did not involve measuring
the volume of the trees, as the formula for calculating the volume derives from trees’
species, DBH, and height. These different approach changes are observed in the different
range values, with a difference of 10%, or in a very high (75%) difference between the
minimum values of volume populations (Table 1).
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Figure 3. Results of segmentation for three plots, maps produced based on traditional measurements
(left column), and 3D maps with digital twins produced with VirtSilv AI platform (right column).

Table 1. Results for parameters extracted (DBH, height, volume).

DBH_t DBH_v H_t H_v Vol_t Vol_v

Mean 42.57 43.24 33.50 33.66 2.50 2.76
Standard Error 0.43 0.39 0.19 0.18 0.05 0.06

Median 39.40 40.60 33.80 33.79 1.78 2.04
Mode 34.80 33.00 30.80 28.02 0.65 1.44

Standard Deviation 15.65 14.10 6.87 6.41 2.00 2.14
Sample Variance 244.82 198.83 47.24 41.11 4.00 4.56

Kurtosis −0.21 0.08 2.01 2.79 1.84 1.43
Skewness 0.58 0.67 −1.00 −0.97 1.33 1.31

Range 94.30 79.80 42.30 42.86 13.25 11.95
Minimum 10.00 13.30 5.00 5.82 0.02 0.08
Maximum 104.30 93.10 47.30 48.68 13.27 12.03

Sum 57,005.30 57,901.20 44,849.93 45,072.73 3353.35 3696.87
Count 1339.00 1339.00 1339.00 1339.00 1339.00 1339.00

Confidence Level (95.0%) 0.84 0.76 0.37 0.34 0.11 0.11

According to the Breusch-Pagan test used on all measurements (DBH, H, and volume),
heteroskedasticity is not present. The variance function and the χ2-test were used to test
the null hypothesis that heteroskedasticity is not present, and they show that the variability
of the random disturbance is not different across elements of the vector (Table A1).
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The Pearson correlation coefficient used to examine the strength and direction of
the linear relationship between classical and virtual measurement continuous variables
indicates values over 0.9 (very close to the absolute value of 1), which indicates a perfect
linear relationship. The relationship with the highest correlation coefficient was identified
at DBH measurements of 0.96 and the lowest was identified at height measurements of 0.9
(Figure 4).

Figure 4. Correlations between classical measurements and virtual measurements.

The lower R value in height measurements is given by an overestimation in the virtual
environment at dominated trees, as in some cases additional branches from neighboring
trees interfered with the measurement process. In case of DBH, it can be observed that a
cluster of Fagus sylvatica trees with lower diameters than 25 were overestimated due to
high density of branches at 1.3 m on the stem (Figure 3).

The p-values for the correlation between classical and virtual measurements are less
than the significance level of 0.05, which indicates that the correlation coefficients are
significant (Figure 4).

Bland and Altman’s limits of agreement plot (LoA) described how far apart measure-
ments by two methods were more likely to be for most individuals. Inside LoA there
were calculated the mean difference, the estimated bias, and the standard deviations of
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the differences to measure the random fluctuations around the mean. The mean value
of the difference does not differ significantly from 0 on all observed characteristics. The
differences within a mean of ± 1.96 SD appeared as not important, most of them remaining
in the 95% limits of agreement for each comparison, concluding that the two methods may
be used interchangeably and practically estimate the same results (Figure 5).
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To visually appraise the performance of the new method in the spirit of Bland and
Altman’s limits of the agreement, the bias plot and the precision plot were generated. These
plots allow the visualization of the bias-corrected values (i.e., recalibrated values, variable
y1_corr) of the new measurement method (Figure 5).

In the case of DBH, compared to the reference method, the new method has a differ-
ential bias of 6.098 and a proportional bias of 0.873. The variance of the new method is
smaller than the one for the reference method. The scatter plot of the new method (virtual
measurements) and reference method (traditional measurements) versus the best linear
prediction (BLUP) with the two regression lines shows that the bias is decreasing with the
increase of the DBH. The red bias line shows an inverse proportional trend as the bias of
DBH is decreasing with the value from 4 cm in smaller diameters than 20 cm, to −4 cm
in larger diameters over 80 cm. This shows a limitation of the virtual measurements as
in younger trees the number of branches at 1.3 m is higher and affects the precision of
measurement. The precision plot of the new measurement method shows that the standard
deviation of measurement error is increasing with the increase of DBH (Figure 6).

Figure 6. Bias and precision plot.
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For height, compared to the reference method (traditional measurements), the new
method (virtual measurement) has a differential bias of 4.952 and a proportional bias of
0.857. The red bias line shows an inverse proportional trend as the bias of H is decreasing
with the value from 3 m in smaller heights than 15 m, to −1 m in higher trees over 40 m.
The standard deviation of measurement error trend shows that it is decreasing with the
increase of DBH (Figure 6).

For tree volume, compared with the traditional method, the virtual measurement has a
differential bias of 0.177 and a proportional bias of 1.033. The red line bias is showing that it
is increasing with the increase of volume and the standard deviation of measurement error
is increasing with the increase of tree volume. The increase of bias with volume is explained
by the different approach in calculating the volume, as for traditional measurements the
generalized formula is not taking into consideration local sites conditions and stand density
and mixture which in many cases leads to an underestimation of volume.

4. Discussion

The forestry sector is well-positioned to play a strong role in reaching the objectives of
the European Green Deal, including the EU Biodiversity Strategy 2030, the new EU Strat-
egy on Adaptation to Climate Change, and the upcoming new Forest Strategy (H1 2021).
Climate-smart forestry principles include maintaining and enhancing environmental bene-
fits, biodiversity, and ecosystem services, as well as specific actions for maintaining and
enhancing forest characteristics, biodiversity, and ecosystem services. Moreover, the EU’s
Digital Strategy (launched in 2020) plans on transforming Europe into a digital single mar-
ket by 2030. This strategy which covers the forestry sector should revolve around four key
pillars: government, skills, infrastructure, and businesses. About 75% of EU businesses are
expected to use cloud technology, artificial intelligence (AI), or big data by 2030, with more
than 90% of SMEs expected to have at least a basic level of digital intensity by 2030 [47].

With two big challenges ahead (i.e., a green and digital transition) digital twinning
and AI solutions in forestry are the next steps for more sustainable solutions that are
resource-efficient and circular. At the same time, digital twinning will contribute to the
European commitment to climate neutrality by 2050 [48]. Investing digital capabilities
(including machine learning, artificial intelligence, and blockchain) may contribute to
achieving EU Green Deals and digital transition objectives, including the forestry sector.
Many global forestry operators and enterprises have already pioneered the progressive use
of advanced technologies to enhance forest management results, particularly in plantation
forestry, an approach that has become known as “precision forestry”. However, it has
not yet become an established part of business-as-usual sustainable forest management
practices, especially due to the lack of key components such as mobile scanners and
complete solutions for analysis.

In this context, the present paper validates a workflow in supporting the digitalization
process of the forestry sector to better inform and enhance the implementation of climate-
smart forestry sustainable management practices. Currently, it has been demonstrated that
digital twinning in forestry can be carried out on large areas using terrestrial perspective,
producing accurate and complete digital twins for each tree [49]. Despite the capacity
of ALS (airborne lidar scanning) to cover large areas, TLS remains the complete solution
for complex forests with multiple stories [17,29]. The terrestrial perspective is giving the
optimal results in producing the complete 3D pointclouds of trees since the understory eye-
of-sight is increasing the visibility of the scanned objects such as trunks and lower branches.

In this paper it was demonstrated that for digital twinning in forestry the entire
workflow needs to take into consideration both the field measurements as they are the
most important part of digital twinning. The efficiency of the segmentation technique
developed in the VirtSilv platform for individual trees from an initial cloud of 3D points
observed in the field proved to be very high. The capacity of VirtSilv AI algorithms to be
customized into a user-friendly interface improved the results of segmentation. Therefore,
the AI algorithms integrated into the system successfully identified unique tree shapes from
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complex forest environments such as natural mixed beech, spruce, and fir forest. Moreover,
the quality of the digital twins in terms of comparing the traditional tree inventory values
(DBH, height, volume) was very high and accurate. VirtSilv AI platform proved to be
a reliable solution in setting up an automatic workflow of processing 3D pointclouds to
produce digital twins for every tree in a specific large area forest. When combined with a
fast mobile LIDAR scanner such as Zeb Horizon, the digital twinning process was reduced
to several hours. This method, compared with traditional inventory, reduced the processing
and analysis time by approximately four-fold.

For the segmentation technique developed in the platform to extract individual trees
using 3D points observed in the field, an accuracy varying between 95 and 98% was
recorded. This result was higher in accuracy than reported by other solutions such as 3D
Forest (85%–89.9%) [50].

The 1339 digital twins produced by the platform were similar in terms of DBH, H, and
volume derived from traditional measurements. Even though it has had a non-significant
influence on the results, the bias of DBH and H was decreasing with the increase of the
values. It was found that both the scanning device and segmentation procedure had
some limitations. It has been documented in other papers that the higher bias on lower
values in DBH is mainly due to the noise in the pointcloud generated by the mobile
scanner [41,49,51,52]. This bias is explained by noise effects especially on lower DBH. In
the case of height, the bias is explained mostly by the segmentation technique which is
influenced by the quality of the pointclouds. At lower heights, the digital twin can be
contaminated with points from a neighboring taller tree, and this explains the descending
trend of the bias with the increase of the tree height.

The upper canopy (branches and leaves) obscures some of the visible parts of the trunk,
resulting in incomplete records. This is a common problem caused by the lack of vertical
visibility. In terms of forest management, the upper part of the trunk does not usually have
an industrial value, this being too thin in diameter. Still, this limitation remains an issue
when managing other forest ecosystem services which rely on finer information. This study
demonstrated that the visibility problem can be solved with a mobile laser and leaf-off
scanning season, which is effective even in mixed coniferous-deciduous stands (as revealed
in other studies as well) [49,53].

The European Union policy framework on forests aims to preserve and restore biodi-
versity with sustainable forest management. The sustainability principles will cover the
entire forest cycle, seeking further knowledge on the optimum integration of all forest ser-
vices. Digital twinning offers a strong informational background to achieve this principle,
extending the knowledge on forests to decision makers and managers, and AI platforms
will be the digital backbone for implementing this strategy.

5. Conclusions

The future of digitalization relies on the high capacity and adaptability of mobile
scanners to produce complete and accurate pointclouds over large areas of forests and the
speed and accuracy of A.I. platforms to translate the raw data into products for decision-
makers. The workflow based on this technology is now validated using GeoSLAM scanner
and VirtSilv platform to produce results comparable with methodologies which were
previously only for research due to their difficulty and high production costs. This new
approach brings the forest sector one step closer to the big data needed for climate-smart
sustainable forest management.
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Appendix A

Table A1. Breusch-Pagan test.

Variable Breusch-Pagan Test

DBH

Residuals:
Min 1Q Median 3Q Max

−22.87 −12.82 −10.46 −6.96 1535.81
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1133 5.9225 0.357 0.7213

dbh_v 0.2751 0.1302 2.112 0.0348 *
Residual standard error: 67.16 on 1337 degrees of freedom

Multiple R-squared: 0.003326, Adjusted R-squared: 0.002581
F-statistic: 4.462 on 1 and 1337 DF, p-value: 0.03484

Height

Residuals:
Min 1Q Median 3Q Max

−35.73 −9.78 −3.73 3.11 783.40
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.7973 5.9211 8.748 < 2 × 10−16 ***

h_v −1.3065 0.1728 −7.561 7.41 × 10−14 ***
Residual standard error: 40.53 on 1337 degrees of freedom

Multiple R-squared: 0.041, Adjusted R-squared: 0.04029
F-statistic: 57.16 on 1 and 1337 DF, p-value: 7.412 × 10−14

Volume

Residuals:
Min 1Q Median 3Q Max

−1.766 −0.382 −0.219 −0.093 54.220
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.05168 0.10338 −0.500 0.617
vol_v 0.17775 0.02962 6.002 2.51 × 10−9 ***

Residual standard error: 2.315 on 1337 degrees of freedom
Multiple R-squared: 0.02624, Adjusted R-squared: 0.02551
F-statistic: 36.02 on 1 and 1337 DF, p-value: 2.509 × 10−9

* p < 0.1, *** p < 0.01.
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50. Trochta, J.; Kruček, M.; Vrška, T.; Kraâl, K. 3D Forest: An application for descriptions of three-dimensional forest structures using

terrestrial LiDAR. PLoS ONE 2017, 12, e0176871. [CrossRef]
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